Density‐dependent trophic consequences of invasive mrigal carp on native mud carp in Chinese fresh waters

Author:

Zhang Yingqiu12345ORCID,Li Jie1235,Chen Fangcan6,Li Yuefei1235,Dai Shouhui7,Britton J. Robert4ORCID

Affiliation:

1. Pearl River Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou China

2. Experimental Station for Scientific Observation on Fishery Resources and Environment in the Middle and Lower Reaches of Pearl River Ministry of Agriculture and Rural Affairs Guangzhou China

3. National Agricultural Scientific Observing and Experimental Station for Fisheries Resources and Environment Guangzhou China

4. Department of Life and Environmental Sciences, Faculty of Science and Technology Bournemouth University Poole UK

5. Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species Ministry of Agriculture and Rural Affairs Guangzhou China

6. Guangzhou Qianjiang Water Ecol Technol Co. Ltd. Guangzhou China

7. Equipment Public Service Center, Key Laboratory of Tropical Marine Bio‐resources and Ecology South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China

Abstract

Abstract Understanding the strength, direction and consequences of the trophic impacts of invasive fish on functionally analogous native fishes is important in invasion impact assessment and for informing management programmes. As functionally analogous native and invasive fishes can share prey resources, there is high potential for competitive interactions, which could affect trophic niche sizes and positions. The highly invasive mrigal carp Cirrhinus mrigala and native mud carp Cirrhinus molitorella now co‐exist in many freshwaters in southern China, raising concern on the consequences for mud carp. The trophic interactions of the two species and their consequences (for growth rates and trophic niche sizes as the isotopic niche, calculated using δ13C and δ15N) were tested in a pond enclosure experiment based on additive and substitutive treatments using fish in allopatric and sympatric contexts, with results compared with invaded wild communities. In the experiment, specific growth rates decreased significantly as fish abundance in treatments increased. These density‐dependent effects were observed in both species and were independent of whether the treatment was allopatric or sympatric. In allopatric treatments, isotopic niches of mud carp increased in size with fish number. Conversely, in sympatric treatments, mud carp isotopic niche size decreased with increased mrigal carp number. For mrigal carp, isotopic niche sizes decreased as fish number increased in both allopatric and sympatric treatments. In sympatric experiment treatments, the isotopic niches of mud carp and mrigal carp were always divergent. This was, however, in contrast to four invaded wild communities, where the isotopic niches of the two fishes always had some overlap. Experimental and field data suggest that although native mud carp could be impacted by mrigal carp, these impacts might only manifest when the species are at very high abundances and inter‐specific competitive interactions could be intense. These results also suggest the two species have mechanisms that reduce their inter‐specific interactions to minimise their competitive interactions, thus any ecological impacts from mrigal carp might manifest more from indirect than direct processes.

Funder

Guangzhou Municipal Science and Technology Project

China Scholarship Council

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3