Affiliation:
1. Division of Neuroscience IRCCS San Raffaele Scientific Institute Milan Italy
2. Vita‐Salute San Raffaele University Milan Italy
Abstract
AbstractParkinson's disease (PD) is a neurodegenerative disorder characterized by progressive dysfunction and loss of dopaminergic neurons of the substantia nigra pars compacta (SNc). Several pathways of programmed cell death are likely to play a role in dopaminergic neuron death, such as apoptosis, necrosis, pyroptosis and ferroptosis, as well as cell death associated with proteasomal and mitochondrial dysfunction. A better understanding of the molecular mechanisms underlying dopaminergic neuron death could inform the design of drugs that promote neuron survival.Necroptosis is a recently characterized regulated cell death mechanism that exhibits morphological features common to both apoptosis and necrosis. It requires activation of an intracellular pathway involving receptor‐interacting protein 1 kinase (RIP1 kinase, RIPK1), receptor‐interacting protein 3 kinase (RIP3 kinase, RIPK3) and mixed lineage kinase domain‐like pseudokinase (MLKL). The potential involvement of this programmed cell death pathway in the pathogenesis of PD has been studied by analysing biomarkers for necroptosis, such as the levels and oligomerization of phosphorylated RIPK3 (pRIPK3) and phosphorylated MLKL (pMLKL), in several PD preclinical models and in PD human tissue. Although there is evidence that other types of cell death also have a role in DA neuron death, most studies support the hypothesis that this cell death mechanism is activated in PD tissues. Drugs that prevent or reduce necroptosis may provide neuroprotection for PD. In this review, we summarize the findings from these studies. We also discuss how manipulating necroptosis might open a novel therapeutic approach to reduce neuronal degeneration in PD.
Funder
Ministero della Salute
Fondazione Telethon
Ministero dell’Istruzione, dell’Università e della Ricerca
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献