USTNet: Unsupervised Shape‐to‐Shape Translation via Disentangled Representations

Author:

Wang Haoran1ORCID,Li Jiaxin1ORCID,Telea Alexandru2ORCID,Kosinka Jiří3ORCID,Wu Zizhao1ORCID

Affiliation:

1. Hangzhou Dianzi University Hangzhou China

2. Utrecht University Utrecht Netherlands

3. University of Groningen Groningen Netherlands

Abstract

AbstractWe propose USTNet, a novel deep learning approach designed for learning shape‐to‐shape translation from unpaired domains in an unsupervised manner. The core of our approach lies in disentangled representation learning that factors out the discriminative features of 3D shapes into content and style codes. Given input shapes from multiple domains, USTNet disentangles their representation into style codes that contain distinctive traits across domains and content codes that contain domain‐invariant traits. By fusing the style and content codes of the target and source shapes, our method enables us to synthesize new shapes that resemble the target style and retain the content features of source shapes. Based on the shared style space, our method facilitates shape interpolation by manipulating the style attributes from different domains. Furthermore, by extending the basic building blocks of our network from two‐class to multi‐class classification, we adapt USTNet to tackle multi‐domain shape‐to‐shape translation. Experimental results show that our approach can generate realistic and natural translated shapes and that our method leads to improved quantitative evaluation metric results compared to 3DSNet. Codes are available at https://Haoran226.github.io/USTNet.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference51 articles.

1. Representation Learning: A Review and New Perspectives

2. ChoiY. ChoiM. KimM. HaJ. KimS. ChooJ.: Star-GAN: Unified generative adversarial networks for multi-domain image-to‐image translation. InProc. IEEE CVPR(2018) pp.8789–8797. 4 7

3. ChenX. DuanY. HouthooftR. SchulmanJ. SutskeverI. AbbeelP.: InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. InProc. NIPS(2016) pp.2172–2180. 4

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3