Repeated Caledonian burial and ultrafast cooling and exhumation of high‐pressure granulite facies rocks from the Blåhø Nappe on the island of Fjørtoft, Western Gneiss Region, Norway

Author:

Liu Penglei1,Massonne Hans‐Joachim1

Affiliation:

1. School of Earth Sciences China University of Geosciences Wuhan China

Abstract

AbstractThe allochthonous Blåhø Nappe in the Nordøyane ultra high pressure (UHP) domain, Western Gneiss Region in Norway, acts as a window to examine geological processes occurring in continent–continent collisional zones, but many aspects regarding its tectonometamorphic evolution remain debated and elusive. In this contribution, an integrated study including major‐ and trace‐element zoning in garnet, phase equilibrium modelling and the simulation of cation diffusion in garnet was conducted on two high‐pressure (HP) granulite facies rocks from the Blåhø Nappe on the island of Fjørtoft. The results shed new light on the complex geodynamic processes that act in continent–continent collisional zones and finally shape collisional orogens. Phengite, biotite, amphibole, zoisite‐allanite and low‐Zr rutile enclosed in garnet likely attest to a prograde eclogite facies metamorphism for the studied rocks. Pressure–temperature (P–T) conditions of ~1.5–1.6 GPa and 615–670°C were retrieved for this stage. An extensive re‐equilibration under peak HP granulite facies conditions of ~1.5 GPa and 925 ± 50°C followed. Subsequently, the rocks were cooled and reburied to eclogite facies conditions of ~1.8–1.9 GPa and 805–825°C. This was followed by a final stage of decompression and cooling to amphibolite facies conditions of ~650–780°C and 0.5–1.0 GPa. Cooling and exhumation rates of >400°C/Ma and >75 km/Ma, respectively, indicating an ultrafast temperature and pressure decrease are estimated for this stage from simulations of cation diffusion in garnet. The anticlockwise P–T path obtained here is relatively complete and compatible with a repeated burial history during the Caledonian orogeny but not with UHP conditions proposed for the Blåhø Nappe. Our model proposes that the rocks later forming the Blåhø Nappe were buried to lower crustal depths of approximately 55 km equating to a geothermal gradient of ~13°C/km during the early Caledonian orogeny. Subsequent heating of these rocks to HP granulite facies conditions was likely driven by slab break‐off and hot mantle upwelling. Baltica underthrusting during the Scandian continent–continent collision cooled and transported the Blåhø Nappe to greater depths. The obtained cooling and exhumation rates indicate ultrafast exhumation, presumably in an exhumation channel.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Geochemistry and Petrology,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3