Incompatibility between serpentinization and epidote formation in the lower oceanic crust: Evidence from the Oman Drilling Project

Author:

Nozaka Toshio1,Tateishi Yamato1

Affiliation:

1. Department of Earth Sciences Okayama University Okayama Japan

Abstract

AbstractIt is a general tendency that epidote, which is a typical greenschist facies mineral, is scarce in the lower oceanic crust, in spite of the widespread occurrence of the other minerals indicative of similar temperature conditions such as chlorite, actinolite, prehnite and serpentine. To find the cause of this, we carried out petrological analyses of lower crustal rocks of the Oman ophiolite sampled by the Oman Drilling Project of the International Continental Scientific Drilling Program (ICDP). Petrographic observations revealed the tendency, as expected, that the amount of epidote formed by static alteration of plagioclase decreases with depth. Because mineral assemblages indicative of a wide range of temperature conditions from amphibolite to subgreenschist facies occur throughout the cores without systematic variations of abundance, the decrease of epidote amount cannot be explained by the difference of temperature condition of alteration. Petrographic observations also revealed that epidote is absent or rare in rocks containing serpentinized olivine in contrast to prehnite showing a close association with serpentinization of olivine. In an exceptional sample containing both epidote and serpentinized olivine, epidote occurs with chlorite that cuts or replaces plagioclase, mantles adjacent olivine and is connected with chlorite + lizardite veins cutting mesh‐forming serpentine veins. The distribution and mode of occurrence of epidote suggest decoupling of its formation with the main stage of serpentinization. Serpentine veins cutting olivine to form mesh texture are typically lizardite with magnetite ribbons at vein centres and have compositions of lizardite–cronstedtite solid solution at vein margins or in magnetite‐free veins, suggesting a chemical condition with low silica and low oxygen potentials at an early stage of serpentinization. Thermodynamic modelling for olivine and plagioclase alteration at greenschist facies conditions indicates that silica potential for plagioclase alteration to form prehnite + chlorite and epidote + chlorite could be higher than for olivine serpentinization. On the other hand, oxygen potential for the prehnite + chlorite formation is lower than for the epidote + chlorite formation and is comparable with that for olivine serpentinization. From the observations and analyses, it is concluded that epidote formation is inhibited by olivine serpentinization, which maintains a reducing condition for alteration in the lower oceanic crust.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Geochemistry and Petrology,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3