Affiliation:
1. Department of Chemistry Birla Institute of Technology, Mesra Ranchi Jharkhand India
Abstract
AbstractSilver ions possess inherent antioxidant properties, whereas hydroxyapatite (HAP) is a structural support within the body. The research methodology involves synthesizing HAP and 3% silver‐doped hydroxyapatite (Ag‐HAP) via the sol–gel method, followed by comprehensive characterization using X‐ray diffraction, Fourier transform infrared, Raman spectroscopy, and field emission scanning electron microscopy, antioxidant, thrombogenicity, and cell viability. The investigation reveals that Ag‐HAP exhibits superior antioxidant properties and thrombogenicity compared to other metals doped so far. Remarkably, Ag‐HAP demonstrates moderate clotting behavior compared to HAP. Additionally, the (3‐(4, 5‐dimethythiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide) MTT assay evaluates cellular viability, shedding light on the biocompatibility of the materials. The study uncovers the potential of silver doping to enhance the antioxidant capabilities of HAP significantly, offering promising prospects for orthopaedic implants. The antioxidant activity of the materials is evaluated through a 2,2‐diphenyl‐1‐picrylhydrazyl radical scavenging assay, whereas the thrombogenicity is assessed using a whole blood clotting method. The improvement indicates that incorporating silver ions influences HAP crystalline structure and increased grain size, contributing to enhanced antioxidant efficacy and favorable cellular responses, thus underlining the potential of Ag‐HAP for advanced implant materials in orthopaedic surgery. The results also discuss that how Ag‐HAP is better than Co‐HAP.