Highly efficient sunlight‐driven photodegradation of industrial dyes by Ni‐, Cu‐, and Zn‐doped MgO nanopowders

Author:

Tangcharoen Thanit1ORCID,Lin Kun‐Yi Andrew23

Affiliation:

1. Department of Basic Science and Physical Education, Faculty of Science at Sriracha Kasetsart University, Sriracha Campus Chonburi Thailand

2. Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture National Chung Hsing University Taichung Taiwan

3. Institute of Analytical and Environmental Sciences National Tsing Hua University Hsinchu Taiwan

Abstract

AbstractThis study provides the first ever investigation of the influence of nickel, copper, and zinc additives upon magnesium oxide powders when synthesized via sol–gel autocombustion. In order to assess the resulting properties of the samples affected by the addition of Ni, Cu, and Zn ions, a number of investigative techniques were employed, among which were X‐ray diffraction (XRD), Fourier transform infrared (FT‐IR) spectroscopy, scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X‐ray photoelectron spectroscopy (XPS), ultraviolet (UV)–visible diffuse reflectance spectroscopy (UV‐DRS), photoluminescence (PL) spectroscopy, and vibrating sample magnetometry (VSM). From XRD results, it was apparent that when Ni, Cu, and Zn ions are added to MgO, cubic solid solutions of NiMgO, CuMgO, and ZnMgO are created. UV‐DRS analysis showed significantly improved absorption levels in the samples that were optimally modified compared to the pure sample across UV, visible, and infrared spectral observations. Analysis of the photocatalytic activity exhibited by the synthesized samples was performed by considering the decomposition under sunlight of rhodamine B, methylene blue, methyl orange, and methyl red. The degradation under sunlight for these organic dyes was shown to be superior to that of pure MgO, achieving a range of 91%–95% in just 150 min.

Funder

Kasetsart University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3