Affiliation:
1. Hannover Medical School Institute of Neuroanatomy and Cell Biology Hannover Germany
2. Center for Systems Neuroscience (ZSN) Hannover Germany
3. Department of Veterinary Pathology Freie Universität Berlin Berlin Germany
4. Institute of Toxicology Hannover Germany
5. Core Facility Proteomics Institute of Toxicology Hannover Germany
6. School of Psychological Sciences Tel Aviv University Tel Aviv Israel
Abstract
AbstractHarmful alcohol consumption is a major socioeconomic burden to the health system, as it can be the cause of mortality of heavy alcohol drinkers. The dopaminergic (DAergic) system is thought to play an important role in the pathogenesis of alcohol drinking behaviour; however, its exact role remains elusive. Fibroblast growth factor 2 (FGF‐2), a neurotrophic factor, associated with both the DAergic system and alcohol consumption, may play an important role in DAergic neuroadaptations during alcohol abuse. Within this study, we aimed to clarify the role of endogenous FGF‐2 on the DAergic system and whether there is a possible link to alcohol consumption. We found that lack of FGF‐2 reduces the alcohol intake of mice. Transcriptome analysis of DAergic neurons revealed that FGF‐2 knockout (FGF‐2 KO) shifts the molecular fingerprint of midbrain dopaminergic (mDA) neurons to DA subtypes of the ventral tegmental area (VTA). In line with this, proteomic changes predominantly appear also in the VTA. Interestingly, these changes led to an altered regulation of the FGF‐2 signalling cascades and DAergic pathways in a region‐specific manner, which was only marginally affected by voluntary alcohol consumption. Thus, lack of FGF‐2 not only affects the gene expression but also the proteome of specific brain regions of mDA neurons. Our study provides new insights into the neuroadaptations of the DAergic system during alcohol abuse and, therefore, comprises novel targets for future pharmacological interventions.
Funder
Israel Science Foundation
Deutsche Forschungsgemeinschaft
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献