iEEG‐recon: A fast and scalable pipeline for accurate reconstruction of intracranial electrodes and implantable devices

Author:

Lucas Alfredo12ORCID,Scheid Brittany H.12ORCID,Pattnaik Akash R.12ORCID,Gallagher Ryan1,Mojena Marissa1,Tranquille Ashley1,Prager Brian1,Gleichgerrcht Ezequiel34ORCID,Gong Ruxue4ORCID,Litt Brian125,Davis Kathryn A.15,Das Sandhitsu15,Stein Joel M.15,Sinha Nishant125ORCID

Affiliation:

1. Center for Neuroengineering and Therapeutics University of Pennsylvania Philadelphia Pennsylvania USA

2. Department of Bioengineering University of Pennsylvania Philadelphia Pennsylvania USA

3. Department of Neurology Medical University of South Carolina Charleston South Carolina USA

4. Department of Neurology Emory University Atlanta Georgia USA

5. Department of Neurology University of Pennsylvania Philadelphia Pennsylvania USA

Abstract

AbstractObjectiveClinicians use intracranial electroencephalography (iEEG) in conjunction with noninvasive brain imaging to identify epileptic networks and target therapy for drug‐resistant epilepsy cases. Our goal was to promote ongoing and future collaboration by automating the process of “electrode reconstruction,” which involves the labeling, registration, and assignment of iEEG electrode coordinates on neuroimaging. We developed a standalone, modular pipeline that performs electrode reconstruction. We demonstrate our tool's compatibility with clinical and research workflows and its scalability on cloud platforms.MethodsWe created iEEG‐recon, a scalable electrode reconstruction pipeline for semiautomatic iEEG annotation, rapid image registration, and electrode assignment on brain magnetic resonance imaging (MRI). Its modular architecture includes a clinical module for electrode labeling and localization, and a research module for automated data processing and electrode contact assignment. To ensure accessibility for users with limited programming and imaging expertise, we packaged iEEG‐recon in a containerized format that allows integration into clinical workflows. We propose a cloud‐based implementation of iEEG‐recon and test our pipeline on data from 132 patients at two epilepsy centers using retrospective and prospective cohorts.ResultsWe used iEEG‐recon to accurately reconstruct electrodes in both electrocorticography and stereoelectroencephalography cases with a 30‐min running time per case (including semiautomatic electrode labeling and reconstruction). iEEG‐recon generates quality assurance reports and visualizations to support epilepsy surgery discussions. Reconstruction outputs from the clinical module were radiologically validated through pre‐ and postimplant T1‐MRI visual inspections. We also found that our use of ANTsPyNet deep learning‐based brain segmentation for electrode classification was consistent with the widely used FreeSurfer segmentations.SignificanceiEEG‐recon is a robust pipeline for automating reconstruction of iEEG electrodes and implantable devices on brain MRI, promoting fast data analysis and integration into clinical workflows. iEEG‐recon's accuracy, speed, and compatibility with cloud platforms make it a useful resource for epilepsy centers worldwide.

Funder

American Epilepsy Society

National Institute of Neurological Disorders and Stroke

National Institutes of Health

Publisher

Wiley

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3