Affiliation:
1. Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College Jimei University Xiamen China
2. College of life science Ningde Normal University Ningde China
Abstract
AbstractFish skin is the first barrier against external invasion, and also an important interface for communication between males and females during reproduction. Nonetheless, sexual dimorphism in the physiology of fish skins is still poorly understood. Herein, transcriptomes of skin were comparatively analysed between males and females in spinyhead croaker, Collichthys lucidus. Totally, 170 differentially expressed genes (DEG) were detected, including 79 female‐biased genes and 91 male‐biased genes. Gene ontology (GO) annotation items of the DEGs were mainly enriched in biological process items (86.2%), including regulation of biological processes, responses to chemical and biological stimuli, transport and secretion, movement, immune response, tissue development, etc. In KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis, the male‐biased genes were enriched in pathways including those related to immunity such as the TNF signalling pathway and IL‐17 signalling pathway, whereas the female‐biased genes were enriched in pathways including those related to female steroids such as ovarian steroidogenesis and oestrogen signalling pathway. In addition, odf3 was found to be a male‐specific expression gene, being a candidate marker for phenotypic sex. Thus, the sexual difference in gene expression in fish skin in spawning season was uncovered by transcriptome analysis for the first time, providing new insights into sexual dimorphism in the physiology and functions of fish skin.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
Jimei University
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献