A quantitative residual stiffness model for carbon fiber reinforced polymer tendons

Author:

Wang Chao1ORCID,Zhang Jiwen23,Gonzalez‐Libreros Jaime1,Tu Yongming123,Elfgren Lennart1,Sas Gabriel1

Affiliation:

1. Division of Structural and Fire Engineering Luleå University of Technology Luleå Sweden

2. School of Civil Engineering Southeast University Nanjing China

3. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, National Engineering Research Center for Prestressing Technology, School of Civil Engineering Southeast University Nanjing China

Abstract

AbstractIn this study, tension‐tension fatigue tests were conducted to investigate the residual stiffness degradation of carbon fiber‐reinforced polymer (CFRP) tendons. Different stress levels were used in the tests, and measurements of residual stiffness and the number of loading cycles were taken. Based on experimental data for CFRP tendons, a quantitative residual stiffness model was developed by modifying Yao's model. This model is applicable to various stress levels. To assess its accuracy and applicability, the predicted results of this model were compared with those of cited models from other researchers. The findings revealed a three‐stage degradation of residual stiffness in CFRP tendons under different stress levels. Furthermore, it was observed that the proportion of fatigue life accounted for by Stage III decreased with smaller stress ranges, while the proportion accounted for by Stage II increased. The proposed quantitative residual stiffness model was verified using both experimental and cited data.

Funder

Svenska Forskningsrådet Formas

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3