Affiliation:
1. School of Aerospace Engineering and Applied Mechanics Tongji University Shanghai China
2. Department of Engineering and Management University of Padova Vicenza Italy
3. Department of Chemical Engineering Materials Environment Sapienza University of Rome Rome Italy
Abstract
AbstractInvestigating fatigue failure in titanium alloys is crucial for material design and engineering. Fatigue behavior in dual‐phase titanium alloys is strongly correlated with microstructural features and microdefects. This work formulates an improved modeling method to investigate fatigue behavior of bimodal Ti–6Al–4V, emphasizing the effects of lamellar orientation and microdefects. Using an improved Voronoi tessellation method, we establish representative volume element (RVE) models with various grain size distributions. Crystal plasticity finite element modeling (CPFEM) is used to analyze fatigue deformation in bimodal Ti–6Al–4V, considering microdefects and lamellar orientation. Fatigue indicator parameters are then incorporated into CPFEM to predict fatigue life and verified with experimental data. Numerical results highlight the significant influence of lamellar orientation and microdefects on fatigue behavior, with predicted life within the 3‐error band. This method efficiently overcomes challenges in quantitatively characterizing microstructural lamellae that experiments are short of, paving the way for designing fatigue‐resistant alloy materials with similar microstructures.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献