Affiliation:
1. Laboratoire des Interactions Plantes‐Microbes‐Environnement (LIPME), INRAE, CNRS Université de Toulouse Castanet‐Tolosan F‐31326 France
2. Plateforme imagerie TRI‐FRAIB, FR AIB Université de Toulouse, CNRS Castanet‐Tolosan F‐31320 France
Abstract
SUMMARYPlant immune receptors, known as NOD‐like receptors (NLRs), possess unique integrated decoy domains that enable plants to attract pathogen effectors and initiate a specific immune response. The present study aimed to create a library of these integrated domains (IDs) and screen them with pathogen effectors to identify targets for effector virulence and NLR–effector interactions. This works compiles IDs found in NLRs from seven different plant species and produced a library of 78 plasmid clones containing a total of 104 IDs, representing 43 distinct InterPro domains. A yeast two‐hybrid assay was conducted, followed by anin plantainteraction test, using 32 conserved effectors fromRalstonia pseudosolanacearumtype III. Through these screenings, three interactions involving different IDs (kinase, DUF3542, WRKY) were discovered interacting with two unrelated type III effectors (RipAE and PopP2). Of particular interest was the interaction between PopP2 and ID#85, an atypical WRKY domain integrated into a soybean NLR gene (GmNLR‐ID#85). Using a Förster resonance energy transfer‐fluorescence lifetime imaging microscopy technique to detect protein–protein interactions in living plant cells, PopP2 was demonstrated to physically associate with ID#85 in the nucleus. However, unlike the known WRKY‐containing Arabidopsis RRS1‐R NLR receptor, GmNLR‐ID#85 could not be acetylated by PopP2 and failed to activate RPS4‐dependent immunity when introduced into the RRS1‐R immune receptor. The generated library of 78 plasmid clones, encompassing these screenable IDs, is publicly available through Addgene. This resource is expected to be valuable for the scientific community with respect to discovering targets for effectors and potentially engineering plant immune receptors.
Funder
Agence Nationale de la Recherche
Subject
Cell Biology,Plant Science,Genetics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献