Three novel Er blood group system alleles and insights from protein modeling

Author:

Lane William J.12ORCID,Vege Sunitha3ORCID,Mah Helen H.1,Ochoa‐Garay Gorka3ORCID,Lomas‐Francis Christine3,Westhoff Connie M.3ORCID

Affiliation:

1. Department of Pathology Brigham and Women's Hospital Boston Massachusetts USA

2. Harvard Medical School Boston Massachusetts USA

3. Immunohematology and Genomics Laboratory New York Blood Center Enterprises New York New York USA

Abstract

AbstractBackgroundThe Er blood group system was recently shown to be defined by PIEZO1. The system consists of high prevalence antigens Era, Er3, ERSA, and ERAMA; and low prevalence antigen Erb. Era/Erb are antithetical with Er(a−b+) defined by the ER*B allele [c.7180G>A p.(Gly2394Ser)]. A nonsense variant c.5289C>G p.(Tyr1763*) is associated with a predicted Ernull phenotype, and a missense variant c.7174G>A p.(Glu2392Lys) in close proximity to p.2394 causes loss of both Era and Erb expression.Study Design and MethodsWe investigated PIEZO1 in four Er(a−) individuals who presented with anti‐Era. Whole genome sequencing (WGS) and Sanger sequencing were performed. The location and structural differences of predicted protein changes were visualized using the predicted 3‐D structure of Piezo1 created using AlphaFold2.ResultsOne individual was homozygous for the reported ER*B. A second had a novel heterozygous nonsense variant c.3331C>T p.(Gln1111*), but a second allelic variant was not found. In the remaining two individuals, two different heterozygous novel missense variants, c.7184C>T p.(Ala2395Val) or c.7195G>A p.(Gly2399Ser), were in trans to the reported c.7180G>A variant, ER*B. AlphaFold2 protein modeling showed that each of the missense variants is predicted to encode an altered structural conformation near Era and Erb.ConclusionsInvestigation of archived samples resulted in the identification of three novel PIEZO1 alleles including a predicted Ernull and two missense variants. Structural modeling suggests that the missense changes potentially alter Era/Erb epitope expression with p.2399Ser resulting in a small increase in the negative electrostatic potential.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3