Genome‐wide association analysis revealed new QTL and candidate genes affecting the teat number in Dutch Large White pigs

Author:

Deng Michao1,Qiu Zijian1,Liu Chenxi1,Zhong Lijing2,Fan Xinfeng2,Han Yuquan1,Wang Ran1,Li Pinghua13ORCID,Huang Ruihua13ORCID,Zhao Qingbo1ORCID

Affiliation:

1. Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources Institute of Swine Science, Nanjing Agricultural University Nanjing China

2. Jiangsu Lihua Animal Husbandry Co., Ltd Changzhou China

3. Huaian Academy Nanjing Agricultural University Huaian China

Abstract

AbstractTeat number (TNUM) is an important reproductive trait of sows, which affects the weaning survival rate of piglets. In this study, 1166 Dutch Large White pigs with TNUM phenotype were used as the research object. These pigs were genotyped by 50K SNP chip and the chip data were further imputed to the resequencing level. The estimated heritabilities of left teat number (LTN), right teat number (RTN) and total teat number (TTN) were 0.21, 0.19 and 0.3, respectively. Based on chip data, significant SNPs for RTN on SSC2, SSC5, SSC9 and SSC13 were identified using genome‐wide association analysis (GWAS). Significant SNPs for TTN were identified on SSC2, SSC5 and SSC7. Based on imputed data, the GWAS identified a significant SNP (rs329158522) for LTN on SSC17, two significant SNPs (rs342855242 and rs80813115) for RTN on SSC2 and SSC9, and two significant SNPs (rs327003548 and rs326943811) for TTN on SSC5 and SSC6. Among them, four novel QTL were discovered. The Bayesian fine‐mapping method was used to fine map the QTL identified in the GWAS of the imputed data, and the confidence intervals of QTL affecting LTN (SSC17: 45.22–46.20 Mb), RTN (SSC9: 122.18–122.80 Mb) and TTN (SSC5: 14.01–15.91 Mb, SSC6: 120.06–121.25 Mb) were detected. A total of 52 candidate genes were obtained. Furthermore, we identified five candidate genes, WNT10B, AQP5, FMNL3, NUAK1 and CKAP4, for the first time, which involved in breast development and other related functions by gene annotation. Overall, this study provides new molecular markers for the breeding of teat number in pigs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3