Weighted Bayesian network for the classification of unbalanced food safety data: Case study of risk‐based monitoring of heavy metals

Author:

Wang Xinxin12ORCID,Bouzembrak Yamine2,Oude Lansink A. G. J. M.1,van der Fels‐Klerx H. J.12

Affiliation:

1. Business Economics Wageningen University Wageningen The Netherlands

2. Wageningen Food Safety Research Wageningen The Netherlands

Abstract

AbstractHistorical data on food safety monitoring often serve as an information source in designing monitoring plans. However, such data are often unbalanced: a small fraction of the dataset refers to food safety hazards that are present in high concentrations (representing commodity batches with a high risk of being contaminated, the positives) and a high fraction of the dataset refers to food safety hazards that are present in low concentrations (representing commodity batches with a low risk of being contaminated, the negatives). Such unbalanced datasets complicate modeling to predict the probability of contamination of commodity batches. This study proposes a weighted Bayesian network (WBN) classifier to improve the model prediction accuracy for the presence of food and feed safety hazards using unbalanced monitoring data, specifically for the presence of heavy metals in feed. Applying different weight values resulted in different classification accuracies for each involved class; the optimal weight value was defined as the value that yielded the most effective monitoring plan, that is, identifying the highest percentage of contaminated feed batches. Results showed that the Bayesian network classifier resulted in a large difference between the classification accuracy of positive samples (20%) and negative samples (99%). With the WBN approach, the classification accuracy of positive samples and negative samples were both around 80%, and the monitoring effectiveness increased from 31% to 80% for pre‐set sample size of 3000. Results of this study can be used to improve the effectiveness of monitoring various food safety hazards in food and feed.

Publisher

Wiley

Subject

Physiology (medical),Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3