Role of reinforcement learning for risk‐based robust control of cyber‐physical energy systems

Author:

Du Yan1,Chatterjee Samrat2,Bhattacharya Arnab1,Dutta Ashutosh3,Halappanavar Mahantesh2

Affiliation:

1. Optimization and Control Group Pacific Northwest National Laboratory Richland WA USA

2. Data Sciences and Machine Intelligence Group Pacific Northwest National Laboratory Richland WA USA

3. Applied Statistics and Computational Modeling Group Pacific Northwest National Laboratory Richland WA USA

Abstract

AbstractCritical infrastructures such as cyber‐physical energy systems (CPS‐E) integrate information flow and physical operations that are vulnerable to natural and targeted failures. Safe, secure, and reliable operation and control of CPS‐E is critical to ensure societal well‐being and economic prosperity. Automated control is key for real‐time operations and may be mathematically cast as a sequential decision‐making problem under uncertainty. Emergence of data‐driven techniques for decision making under uncertainty, such as reinforcement learning (RL), have led to promising advances for addressing sequential decision‐making problems for risk‐based robust CPS‐E control. However, existing research challenges include understanding the applicability of RL methods across diverse CPS‐E applications, addressing the effect of risk preferences across multiple RL methods, and development of open‐source domain‐aware simulation environments for RL experimentation within a CPS‐E context. This article systematically analyzes the applicability of four types of RL methods (model‐free, model‐based, hybrid model‐free and model‐based, and hierarchical) for risk‐based robust CPS‐E control. Problem features and solution stability for the RL methods are also discussed. We demonstrate and compare the performance of multiple RL methods under different risk specifications (risk‐averse, risk‐neutral, and risk‐seeking) through the development and application of an open‐source simulation environment. Motivating numerical simulation examples include representative single‐zone and multizone building control use cases. Finally, six key insights for future research and broader adoption of RL methods are identified, with specific emphasis on problem features, algorithmic explainability, and solution stability.

Publisher

Wiley

Subject

Physiology (medical),Safety, Risk, Reliability and Quality

Reference51 articles.

1. Cyber physical systems security: Analysis, challenges and solutions

2. A Risk Analysis Framework for Cyber Security and Critical Infrastructure Protection of the U.S. Electric Power Grid

3. Baker J. &Cornell C. A.(2006).Vector‐valued ground motion intensity measures for probabilistic seismic demand analysis. Pacific Earthquake Engineering Research (PEER) Report 2006/08 PEER Center University of California‐Berkeley 368pp.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3