Real‐time threat assessment based on hidden Markov models

Author:

Theodosiadou Ourania1,Chatzakou Despoina1,Tsikrika Theodora1,Vrochidis Stefanos1,Kompatsiaris Ioannis1

Affiliation:

1. Information Technologies Institute Centre for Research and Technology Hellas Thessaloniki Greece

Abstract

AbstractAn essential factor toward ensuring the security of individuals and critical infrastructures is the timely detection of potentially threatening situations. To this end, especially in the law enforcement context, the availability of effective and efficient threat assessment mechanisms for identifying and eventually preventing crime‐ and terrorism‐related threatening situations is of utmost importance. Toward this direction, this work proposes a hidden Markov model‐based threat assessment framework for effectively and efficiently assessing threats in specific situations, such as public events. Specifically, a probabilistic approach is adopted to estimate the threat level of a situation at each point in time. The proposed approach also permits the reflection of the dynamic evolution of a threat over time by considering that the estimation of the threat level at a given time is affected by past observations. This estimation of the dynamic evolution of the threat is very useful, since it can support the decisions by security personnel regarding the taking of precautionary measures in case the threat level seems to adopt an upward trajectory, even before it reaches the highest level. In addition, its probabilistic basis allows for taking into account noisy data. The applicability of the proposed framework is showcased in a use case that focuses on the identification of potential threats in public events on the basis of evidence obtained from the automatic visual analysis of the footage of surveillance cameras.

Publisher

Wiley

Subject

Physiology (medical),Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hidden Markov Model - Applications, Strengths, and Weaknesses;2024 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT);2024-03-15

2. Multi-Stage Network Attack Detection Algorithm Based on Gaussian Mixture Hidden Markov Model and Transfer Learning;IEEE Transactions on Automation Science and Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3