An interpretable XGBoost‐based approach for Arctic navigation risk assessment

Author:

Yao Shuaiyu1,Wu Qinhao2ORCID,Kang Qi1,Chen Yu‐Wang3,Lu Yi4

Affiliation:

1. Department of Control Science and Engineering Tongji University Shanghai China

2. Department of Mathematics and Computer Science Eindhoven University of Technology Eindhoven The Netherlands

3. Alliance Manchester Business School (AMBS) The University of Manchester Manchester UK

4. COSCO Shipping Special Transportation Co., Ltd Guangzhou China

Abstract

AbstractThe Northern Sea Route (NSR) makes travel between Europe and Asia shorter and quicker than a southern transit via the Strait of Malacca and Suez Canal. It provides greater access to Arctic resources such as oil and gas. As global warming accelerates, melting Arctic ice caps are likely to increase traffic in the NSR and enhance its commercial viability. Due to the harsh Arctic environment imposing threats to the safety of ship navigation, it is necessary to assess Arctic navigation risk to maintain shipping safety. Currently, most studies are focused on the conventional assessment of the risk, which lacks the validation based on actual data. In this study, actual data about Arctic navigation environment and related expert judgments were used to generate a structured data set. Based on the structured data set, extreme gradient boosting (XGBoost) and alternative methods were used to establish models for the assessment of Arctic navigation risk, which were validated using cross‐validation. The results show that compared with alternative models, XGBoost models have the best performance in terms of mean absolute errors and root mean squared errors. The XGBoost models can learn and reproduce expert judgments and knowledge for the assessment of Arctic navigation risk. Feature importance (FI) and shapley additive explanations (SHAP) are used to further interpret the relationship between input data and predictions. The application of XGBoost, FI, and SHAP is aimed to improve the safety of Arctic shipping using advanced artificial intelligence techniques. The validated assessment enhances the quality and robustness of assessment.

Publisher

Wiley

Subject

Physiology (medical),Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3