Quantitative risk analysis of treatment plans for patients with tumor by mining historical similar patients from electronic health records using federated learning

Author:

Liu Yang1ORCID,Bi Donghai1ORCID

Affiliation:

1. School of Economics and Management Dalian University of Technology Dalian China

Abstract

AbstractThe determination of a treatment plan for a target patient with tumor is a difficult problem due to the existence of heterogeneity in patients’ responses, incomplete information about tumor states, and asymmetric knowledge between doctors and patients, and so on. In this paper, a method for quantitative risk analysis of treatment plans for patients with tumor is proposed. To reduce the impacts of the heterogeneity in patients’ responses on analysis results, the method conducts risk analysis by mining historical similar patients from Electronic Health Records (EHRs) in multiple hospitals using federated learning (FL). For this, the Recursive Feature Elimination based on the Support Vector Machine (SVM) and Deep Learning Important FeaTures (DeepLIFT) are extended into the FL framework to select key features and determine key feature weights for identifying historical similar patients. Then, in the database of each collaborative hospital, the similarities between the target patient and all historical patients are calculated, and the historical similar patients are determined. According to the statistics of tumor states and treatment outcomes of historical similar patients in all collaborative hospitals, the related data (including the probabilities of different tumor states and possible outcomes of different treatment plans) for risk analysis of the alternative treatment plans can be obtained, which can eliminate the asymmetric knowledge between doctors and patients. The related data are valuable for the doctor and patient to make their decisions. Experimental studies have been conducted to verify the feasibility and effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Physiology (medical),Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3