How restoration engineering measures can enhance the ecological value of intertidal flats

Author:

Wiesebron Lauren E.12ORCID,Cheng Chui H.3,de Vet P. Lodewijk M.45,Walles Brenda3,van Donk Susanne3,van Dalen Jeroen1,van de Lageweg Wietse6,Ysebaert Tom13,Bouma Tjeerd J.12

Affiliation:

1. Department of Estuarine and Delta Systems (EDS) NIOZ Royal Netherlands Institute for Sea Research 4400 AC Yerseke The Netherlands

2. Faculty of Geosciences, Department of Physical Geography Utrecht University Utrecht The Netherlands

3. Wageningen Marine Research Wageningen University & Research 4400 AB Yerseke The Netherlands

4. Deltares P.O. Box 177 Delft 2600 MH The Netherlands

5. Faculty of Civil Engineering and Geosciences Delft University of Technology Delft The Netherlands

6. HZ University of Applied Sciences 4331 NB Middelburg The Netherlands

Abstract

Restoration engineering measures, such as managed realignments or building groins, modify the environmental characteristics of coastal intertidal ecosystems. Creating physical modifications that are beneficial to an intertidal system's ecology necessitates an in‐depth understanding of the relationships between the abiotic and biotic components of a given intertidal habitat. In this study, we evaluate how hydrodynamics and sediment characteristics drive the development of the benthic macrofauna community during the first 5 years following engineering measures to enhance benthic macrofauna diversity at three locations. The creation of low‐energy habitats through groins (Knuitershoek and Baalhoek) and a managed realignment dike breach (Perkpolder) led to the accumulation of fine sediments in all three impact sites. Biomass of benthic macrofauna quickly increased between 2016 and 2020, with successional processes being more important in Perkpolder, where the habitat was started completely from scratch due to a managed realignment, than at Knuitershoek or Baalhoek, where habitat conditions were improved by adding groins. In addition, the density of benthos‐eating birds, especially oystercatchers, increased at some of the modified sites. While a low‐energy habitat may harbor more diverse assemblages of benthic macrofauna than a highly dynamic one, the extremely high silt content, which is typical for low‐energy habitats, may slow benthic community development. The observed increase of biomass at our impact sites highlights the value of the interventions, while the delays in the response of the benthic macrofauna community emphasizes the need for extensive monitoring both in time and space and the identification of underlying abiotic–biotic mechanisms.

Funder

Koninklijke Nederlandse Akademie van Wetenschappen

Rijkswaterstaat

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3