Study on heat and moisture transfer of nonspherical rice during hot‐air drying in thin‐layer grain pile

Author:

Li Xin1ORCID,Yang Kaimin1,Wang Yuancheng1,Du Xinming1

Affiliation:

1. School of Thermal Engineering Shandong Jianzhu University Jinan China

Abstract

AbstractTo investigate fluid flow and coupled heat‐moisture transfer in the hot‐air drying of grain piles, this study integrated the discrete‐element method with computational fluid dynamics. A model for a thin‐layer grain pile, consisting of nonspherical rice particles represented by 13 spheres, was developed. Using a heat‐moisture transfer model based on fluid–solid coupling, the drying process with hot air was simulated and validated against experimental data. Finally, by controlling the drying temperature and the initial moisture content of rice, the variations in temperature and moisture content during the hot‐air drying process were explored. The numerical results indicated that the nonuniform pore structure within the grain pile, gaps on the surface of nonspherical rice, and the wall effect led to complex airflow patterns, resulting in the formation of dead zones within the grain pile. The oscillation frequency and amplitude of radial porosity near the wall were relatively large, and the minimum porosity occurred at a radial distance of 1/2dg. Heat and moisture transfer rates between the rice and drying air were influenced by the temperature and moisture concentration differences. During the drying process, variations in temperature and moisture content were observed among rice particles. Limited by the moisture diffusion coefficient, there existed a notable disparity in moisture content between the interior and surface of the rice. The results also showed that the curvature of the drying curve in the grain pile varied and was influenced by the drying conditions, especially under the high‐temperature drying condition of 60°C.Practical ApplicationsIn this study, a grain pile model for nonspherical rice particles composed of 13 spheres was developed based on the discrete‐element method and computational fluid dynamics. Furthermore, in accordance with the heat and mass transfer mechanism of fluid–solid coupling, a heat‐moisture transfer model for the hot‐air drying of the grain pile was constructed. This was done to deeply explore the internal fluid dynamic characteristics and the heat‐moisture transfer within the grain pile during the drying process. The newly established model can be widely applied to numerical simulation studies of drying and also has reference value for the design of drying systems.

Funder

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3