Mechanical properties and forming conditions optimization of SiC ceramics using Camellia oleifera shell as carbon source

Author:

Li Yuandi1,Chen Hongli1,Lin Shili1,Chen Zhaoke2,Zhang Liqiang1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering Central South University of Forestry and Technology Changsha P. R. China

2. State Key Laboratory of Powder Metallurgy Central South University Changsha China

Abstract

AbstractUsing Camellia oleifera shell as raw materials to preparative SiC ceramics by warm‐press forming and sintering is proposed in this paper. Warm‐press forming before preparing for the C. oleifera shell‐based SiC ceramics is beneficial to obtain the internal uniform and suitable pore structure of the cylindrical sample. Thermogravimetric analysis with differential scanning calorimetry was applied to analyze the pyrolysis behavior of C. oleiefra shell and phenolic resin. The scanning electron microscope and X‐ray diffraction were used to investigate the properties of C. oleifera shell‐based SiC ceramics. Then, the response surface method was applied to establish a multivariate prediction model based on the process parameters of warm‐press forming. And the regression equations of porosity and bending strength of COS‐SiC are obtained. The result demonstrated that the predicted and experimental values can be in good agreement for the model. By comparing the F‐value, it is found that the forming temperature and pressure during the process of warm‐press forming have a more significant influence on the porosity and bending strength of SiC ceramics. The optimization process parameters were obtained as follows: forming temperature 153°C, pressure 35 MPa, and holding time 30 min.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3