Affiliation:
1. Department of Metallurgical and Materials Engineering Faculty of Chemistry and Metallurgy Yildiz Technical University Esenler Istanbul Turkey
2. Department of Metallurgical and Materials Engineering Faculty of Engineering Adıyaman University Adıyaman Turkey
3. Department of Chemistry Faculty of Arts & Science Yildiz Technical University Esenler Istanbul Turkey
Abstract
AbstractIn order to improve filtering efficacy, nanoparticles are often deposited as photocatalytic degrading agents onto porous ceramics. This study aimed to deposit ZnO nanoparticles on ceramic substrates produced from fly ash and red mud with adjustable porosity and investigate their photocatalytic properties. To achieve this goal, at first porous ceramics were produced and sintered at various temperature/time intervals. It was observed that sintering at 800°C for 120 min provided a proper structure and porosity. In addition, MgO replacement with MgCO3 lowered the water absorption of the samples from 25.63% to 11.45%. The samples were then coated with ZnO nanoparticles using the sol–gel method and the ZnO structures obtained were micron‐sized plates. It was observed that increasing porosity increased the ZnO amount and accordingly the photocatalytic properties of the products. During the adsorption tests conducted in the dark, the coated ceramic samples were stained with MB with a maximum MB adsorption ratio of ∼14%. On the other hand, no visible MB stain was observed on the samples that were exposed to UV irradiation, and the MB removal after the UV irradiation was 93.6%; therefore, it was concluded that the dominant MB removal mechanism was photocatalytic.
Subject
Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献