Electrochemical performance and degradation mechanism of rechargeable aqueous Al2O3@Zn//MnO2 battery

Author:

Lee Sihyun1,So Younghee1,Mhin Sungwook1ORCID

Affiliation:

1. Department of Advanced Materials Engineering Kyonggi University Suwon Republic of Korea

Abstract

AbstractRechargeable aqueous Zn ion batteries (AZIBs) have attracted significant attention as a promising alternative to Li‐ion batteries due to the use of water‐based electrolytes, high energy density per volume, and cost‐effectiveness. However, various parasitic reactions relating to hydrogen evolution reaction, corrosion, and dendrite growth in the Zn anode can result in the degradation of the electrochemical performance of AZIBs. Therefore, understanding the mechanisms underlying these various phenomena and their role in the electrochemical performance of AZIBs provides valuable insights for the development of anode and cathode materials. In this study, we investigate the effect of the MnO2 cathode and Al2O3‐coated Zn anode on the electrochemical performance of the AZIBs. The experimental results show that Al2O3‐coated Zn anodes efficiently suppress the dendrite growth on the Zn. However, significant cycling fade of the full cell comprising of an Al2O3‐coated Zn anode and MnO2 cathode was observed during continuous charge/discharge cycles. The poor cycle performance can be mainly attributed to the phase transformation of MnO2–Mn2O3 and the formation of various byproducts, which highlights the importance of the electrochemical stability of cathode materials in AZIBs to improve the cycle performance.

Funder

Ministry of Trade, Industry and Energy

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3