Mechanical properties of SiCf/SiC composites with h‐BN interphase formed by the electrophoretic deposition method

Author:

Yoshida Katsumi1ORCID,Kasakura Mayuko2,Gubarevich Anna1ORCID,Kotani Masaki3

Affiliation:

1. Laboratory for Zero‐Carbon Energy Institute of Innovative Research Tokyo Institute of Technology Tokyo Japan

2. School of Materials and Chemical Technology Department of Materials Science and Engineering Tokyo Institute of Technology Tokyo Japan

3. Aircraft Lifecycle Innovation Hub Aeronautical Technology Directorate Japan Aerospace Exploration Agency (JAXA) Chofu Aerospace Center Aerodome Branch Tokyo Japan

Abstract

AbstractSilicon carbide fiber–reinforced silicon carbide (SiCf/SiC) composites have been expected to be used as next‐generation heat resistant structural materials with high reliability. The fiber/matrix interface for SiCf/SiC composites plays an important role for toughening and strengthening, and it is important to form the optimal interphase for SiCf/SiC composites. In this study, hexagonal‐boron nitride (h‐BN), which shows better oxidation resistance than carbon, was selected as the interphase for SiCf/SiC composites, and h‐BN coating was formed on low‐conductive SiC fibers by the electrophoretic deposition (EPD) method using flaked h‐BN suspension prepared by wet‐jet milling. Unidirectional SiCf/SiC composites with the BN interphase formed by the EPD method were prepared by polymer impregnation and pyrolysis (PIP) method, and their mechanical properties were evaluated. The uniform h‐BN interphase was successfully formed on the low‐conductive SiC fibers by EPD when thin polypyrrole (Ppy) coating, that is, conductive polymer, was formed on the SiC fibers. The h‐BN coating became denser by heat‐treatment at 1000°C, and the h‐BN coating deposited tightly on the SiC fibers was confirmed. It was demonstrated that the SiCf/SiC composites with the uniform and relatively dense h‐BN interphase formed by EPD using flaked h‐BN particles exhibited pseudo‐ductile fracture behavior with large amount of fiber pullout and higher fracture energy.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3