Affiliation:
1. Shaanxi Province Key Laboratory of Thin Films Technology & Optical Test School of Opto‐electronic Engineering Xi'an Technological University Xi'an China
2. Université Paris‐Saclay Univ Evry, LMEE Evry France
3. School of Civil Engineering Chongqing University Chongqing China
Abstract
AbstractAlthough lead‐free dielectric ceramics have been widely studied to obtain excellent dielectric properties and good energy storage properties, the primary challenge of low energy storage density has not yet been resolved. Here, we introduce the concept of crossover relaxor ferroelectrics, which represent a state intermediate between normal ferroelectrics and relaxor ferroelectrics, as a solution to address the issue of low energy density. The (1−x)BaSrTiO3−xBi(Zn1/2Ti1/2)O3 (x = 0,.05, .1, .15, .2) ceramics were prepared by a solid‐state method. Remarkably, 0.85BST–0.15BZT ceramics achieved a high recoverable energy density (Wrec) of 2.18 J/cm3 under an electric field of 240 kV/cm. BST–BZT materials exhibit substantial recoverable energy density, high breakdown strength, and superior energy efficiency, positioning them as a promising alternative to meet the diverse demands of high‐power applications.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献