Finite element analysis of temperature distribution in 3YSZ ceramics during conventional sintering

Author:

Kumar Singh Shubham1ORCID,Lakshya Annu Kumar1,Chowdhury Anirban1,Chakrabarti Tamoghna1ORCID

Affiliation:

1. Department of Metallurgical & Materials Engineering Indian Institute of Technology Patna Bihar India

Abstract

AbstractThe presence of a temperature gradient (if any) within the ceramic sample is casually ignored during the sintering of ceramic shapes. The present work exposes some serious repercussions of such a thought process and provides simple solutions to mitigate the same; 3 mol.% yttria‐doped zirconia ceramic was used for this study. With the help of the combinatorial finite element analysis (FEA) model and real‐life experiments, our work illustrates the complex interplay of heat transfer mechanisms and reveals the dynamic nature of temperature distribution during the heating and cooling cycles of ceramics. Although the rate of heating is usually assigned as the most important factor during sintering, the present study shows that variations in heat transfer mechanism and sample geometry contribute very strongly to overall temperature distribution during the heating, holding, and cooling cycles. Along with of vertical positioning of the samples (inside the furnace), a bottom supporting ceramic plate with a high thermal conductivity can also help in reducing the temperature gradient between the top and bottom of the ceramic samples. Overall, exposing the sample most for the radiative heat transfer holds the key to successful sintering in order to avoid any phase, compositional, or microstructural heterogeneity across the thickness of the specimen.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3