SiC actions on characteristics analysis of AZ91D hybrid nanocomposite by liquid state processing

Author:

Yesuraj K.1,Ali Mohammed2,Venkatesh R.3ORCID,Kumar S. Chandra4

Affiliation:

1. Department of Mechanical Engineering Panimalar Engineering College Chennai Tamil Nadu India

2. Department of Chemistry College of Science King Saud University Riyadh Saudi Arabia

3. Department of Mechanical Engineering Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences (SIMATS) Chennai Tamil Nadu India

4. Department of Mechanical Engineering Kongunadu College of Engineering and Technology Trichy Tamil Nadu India

Abstract

AbstractWith an inherent lowest density and distinct solubility with enhanced mechanical behavior reason, the magnesium alloy composite is extensively used in the auto and aero sectors. The processing of magnesium alloy found micro‐cracks and voids between the oxidation spot, which fails properties. Through the sulfur hexafluoride (SF6) atmosphere, the AZ91D alloy hybrid nanocomposites are synthesized with 10 wt% alumina (Al2O3) and 0, 3, 6, and 9 wt% of silicon carbide (SiC) nanoparticles via a liquid state process with 400 rpm stir speed followed by vacuum die casting. The effect of SiC actions on physical behavior, microstructural formation, and mechanical properties of AZ91D/10 wt%Al2O3, AZ91D/10 wt%Al2O3/3 wt% SiC, AZ91D/10 wt% Al2O3/6 wt% SiC, and AZ91D/10 wt% Al2O3/9 wt% SiC composites are studied and its results compared with cast AZ91D alloy. Due to the actions of SiC in AZ91D/10 wt%Al2O3, the composite density conforms to the rule of mixture, and the void and micro‐cracks are limited (less than 1%) by the impact of the casting process, as evidenced in the microstructural illustration. An effect of 10 wt% Al2O3 and 9 wt% SiC contents in AZ91D facilitates maximum tensile strength of 181 MPa, improved elongation percentage of 2.2%, optimum hardness of 85HV, and superior impact toughness of 21.8 J/mm2, which is higher than the all other compositions.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3