Impacts of three approaches on collaborative knowledge building, group performance, behavioural engagement, and socially shared regulation in online collaborative learning

Author:

Zheng Lanqin1ORCID,Fan Yunchao1,Huang Zichen1,Gao Lei1

Affiliation:

1. School of Educational Technology, Faculty of Education Beijing Normal University Beijing China

Abstract

AbstractBackgroundOnline collaborative learning has been widely adopted in the field of education. However, learners often find it difficult to engage in collaboratively building knowledge and jointly regulating online collaborative learning.ObjectivesThe study compared the impacts of the three learning approaches on collaborative knowledge building, group performance, socially shared regulation, behavioural engagement, and cognitive load in an online collaborative learning context. The first is the automatic construction of knowledge graphs (CKG) approach, the second is the automatic analysis of topic distribution (ATD) approach, and the third one is the traditional online collaborative learning (OCL) approach without any analytic feedback.MethodsA total of 144 college students participated in a quasi‐experimental study, where 48 students learned with the CKG approach, 48 students used the ATD approach, and the remaining 48 students adopted the OCL approach.Results and ConclusionsThe findings revealed that the CKG approach could encourage collaborative knowledge building, socially shared regulation, and behavioural engagement in building knowledge better than the ATD and OCL approaches. Both the CKG and ATD approaches could better improve group performance than the OCL approach. Furthermore, the CKG approach did not increase learners' cognitive load, but the ATD approach did.ImplicationsThis study has theoretical and practical implications for utilising learning analytics in online collaborative learning. Furthermore, deep neural network models are powerful for constructing knowledge graphs and analysing topic distribution.

Funder

Beijing Normal University

Publisher

Wiley

Subject

Computer Science Applications,Education

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3