Affiliation:
1. School of Materials Science and Engineering Central South University Changsha China
2. Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
3. Applied Materials Science, Department of Materials Science and Engineering Uppsala University Uppsala Sweden
Abstract
AbstractUltrafast high‐temperature sintering (UHS) is a novel sintering technique with ultrashort firing cycles (e.g., a few tens of seconds). The feasibility of UHS has been validated on several ceramics and metals; however, its potential in consolidating glass–ceramics has not yet been demonstrated. In this work, an optimized carbon‐free UHS was utilized to prepare ZrO2–SiO2 nanocrystalline glass–ceramics (NCGCs). The phase composition, grain size, densification behavior, and microstructures of NCGCs prepared by UHS were investigated and compared with those of samples sintered by pressureless sintering. Results showed that NCGCs with a high relative density (~95%) can be obtained within ~50 s discharge time by UHS. The UHS processing not only hindered the formation of ZrSiO4 and cristobalite but also enhanced the stabilization of t‐ZrO2. Meanwhile, owing to the ultrashort firing cycles, the UHS technology allowed the NCGCs to be consolidated in a far from equilibrium state. The NCGCs showed a microstructure of spherical monocrystalline ZrO2 nanocrystallites embedded in an amorphous SiO2 matrix.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Vetenskapsrådet
Subject
Materials Chemistry,Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献