Far from equilibrium ultrafast high‐temperature sintering of ZrO2–SiO2 nanocrystalline glass–ceramics

Author:

Fu Le1ORCID,Wu Jinghua2ORCID,Sathyanath Sharath Kumar Manjeshwar3,Wang Bohan1,Leifer Klaus3,Engqvist Håkan3,Grasso Salvatore2ORCID,Xia Wei3

Affiliation:

1. School of Materials Science and Engineering Central South University Changsha China

2. Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering Southwest Jiaotong University Chengdu China

3. Applied Materials Science, Department of Materials Science and Engineering Uppsala University Uppsala Sweden

Abstract

AbstractUltrafast high‐temperature sintering (UHS) is a novel sintering technique with ultrashort firing cycles (e.g., a few tens of seconds). The feasibility of UHS has been validated on several ceramics and metals; however, its potential in consolidating glass–ceramics has not yet been demonstrated. In this work, an optimized carbon‐free UHS was utilized to prepare ZrO2–SiO2 nanocrystalline glass–ceramics (NCGCs). The phase composition, grain size, densification behavior, and microstructures of NCGCs prepared by UHS were investigated and compared with those of samples sintered by pressureless sintering. Results showed that NCGCs with a high relative density (~95%) can be obtained within ~50 s discharge time by UHS. The UHS processing not only hindered the formation of ZrSiO4 and cristobalite but also enhanced the stabilization of t‐ZrO2. Meanwhile, owing to the ultrashort firing cycles, the UHS technology allowed the NCGCs to be consolidated in a far from equilibrium state. The NCGCs showed a microstructure of spherical monocrystalline ZrO2 nanocrystallites embedded in an amorphous SiO2 matrix.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Vetenskapsrådet

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3