Heat stress can change the competitive outcome between fungi: insights from a modelling approach

Author:

Wesener Felix1ORCID,Rillig Matthias C.23,Tietjen Britta13ORCID

Affiliation:

1. Freie Univ. Berlin, Inst. of Biology, Theoretical Ecology Berlin Germany

2. Freie Univ. Berlin, Inst. of Biology, Ecology of Plants Berlin Germany

3. Berlin Brandenburg Inst. of Advanced Biodiversity Research (BBIB) Berlin Germany

Abstract

Under a changing climate, soil fungal communities will increasingly be subject to periods of heat stress. These periods can affect the performance of individual fungi and their competition for space and resources. Competition between fungi is strongly controlled by the exudation of inhibitory compounds, resulting in different competitive outcomes that range from overgrowth of the inferior competitor to a deadlock, where the competing fungi inhibit each other. As heat stress can alter the competitive outcome between fungi, the community composition can also change strongly. So far, a general understanding of the mechanisms that drive the competitive outcome between fungi under heat stress is still missing. However, this understanding is essential to assess important community functions, such as decomposition or mediation of plant nutrition, which strongly depend on the fungal community composition.Here, we used a partial differential equation (PDE) model simulating two fungal competitors in a two‐dimensional space, to mechanistically explain the observed change of fungal competition under heat stress. The model describes mycelial growth, the production and secretion of antifungal compounds and the synthesis of heat shock proteins of interacting colonies. We found a heat stress‐induced lag phase favouring the accumulation of antifungal compounds and the build‐up of inhibitor fields. This led to a qualitative change of the competitive outcome, reducing the occurrence of overgrowth by two thirds. The changes in competitive outcome favoured slower growing species, which benefit more strongly from the additional time during a stress‐induced lag to build up a defence or block territory that would otherwise be quickly claimed by faster competitors.Our work is an important step towards understanding how environmental changes may lead to qualitative changes in competitive outcomes. Our results show the importance of explicitly including species interactions into studies of climate change effects.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3