Correlation analysis of deep learning methods in S‐ICD screening

Author:

ElRefai Mohamed12ORCID,Abouelasaad Mohamed1,Wiles Benedict M.3,Dunn Anthony J.4,Coniglio Stefano5,Zemkoho Alain B.4,Morgan John2,Roberts Paul R.12

Affiliation:

1. Cardiac Rhythm Management Research Department University Hospital Southampton NHS Foundation Trust Southampton UK

2. Faculty of Medicine University of Southampton Southampton UK

3. Aberdeen Royal Infirmary Scotland UK

4. School of Mathematical Sciences University of Southampton UK

5. Department of Economics University of Bergamo Bergamo Italy

Abstract

AbstractBackgroundMachine learning methods are used in the classification of various cardiovascular diseases through ECG data analysis. The concept of varying subcutaneous implantable cardiac defibrillator (S‐ICD) eligibility, owing to the dynamicity of ECG signals, has been introduced before. There are practical limitations to acquiring longer durations of ECG signals for S‐ICD screening. This study explored the potential use of deep learning methods in S‐ICD screening.MethodsThis was a retrospective study. A deep learning tool was used to provide descriptive analysis of the T:R ratios over 24 h recordings of S‐ICD vectors. Spearman's rank correlation test was used to compare the results statistically to those of a “gold standard” S‐ICD simulator.ResultsA total of 14 patients (mean age: 63.7 ± 5.2 years, 71.4% male) were recruited and 28 vectors were analyzed. Mean T:R, standard deviation of T:R, and favorable ratio time (FVR)—a new concept introduced in this study—for all vectors combined were 0.21 ± 0.11, 0.08 ± 0.04, and 79 ± 30%, respectively. There were statistically significant strong correlations between the outcomes of our novel tool and the S‐ICD simulator (p < .001).ConclusionDeep learning methods could provide a practical software solution to analyze data acquired for longer durations than current S‐ICD screening practices. This could help select patients better suited for S‐ICD therapy as well as guide vector selection in S‐ICD eligible patients. Further work is needed before this could be translated into clinical practice.

Publisher

Wiley

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3