Affiliation:
1. Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
Abstract
Abstract
Objectives
Drug combinations consisting of the DNA intercalating benzophenanthridine alkaloid sanguinarine, the chelator EDTA with the antibiotic streptomycin were tested against several Gram-positive and Gram-negative bacteria, including multi-resistant clinical isolates.
Methods
Microdilution, checkerboard and time kill curve methods were used to investigate the antibacterial activity of the individual drugs and the potential synergistic activity of combinations.
Key findings
Sanguinarine demonstrated a strong activity against Gram-positive and Gram-negative bacteria (minimum inhibitory concentrations, MIC = 0.5–128 μg/ml), while streptomycin was active against Gram-negative strains (MIC = 2–128 μg/ml). EDTA showed only bacteriostatic activity. Indifference to synergistic activity was seen in the two-drug combinations sanguinarine + EDTA and sanguinarine + streptomycin (fractional inhibitory concentration index = 0.1–1.5), while the three-drug combination of sanguinarine + EDTA + streptomycin showed synergistic activity against almost all the strains (except methicillin-resistant Staphylococcus aureus), as well as a strong reduction in the effective doses (dose reduction index = 2–16 times) of sanguinarine, EDTA and streptomycin. In time kill studies, a substantial synergistic interaction of the three-drug combination was detected against Escherichia coli and Klebsiella pneumoniae.
Conclusions
The combination of drugs, which interfere with different molecular targets, can be an important strategy to combat multidrug resistant bacteria.
Publisher
Oxford University Press (OUP)
Subject
Pharmaceutical Science,Pharmacology
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献