Inhibition of hedgehog signal pathway by cyclopamine attenuates inflammation and articular cartilage damage in rats with adjuvant-induced arthritis

Author:

Li Rong1,Cai Li2,Ding Jing2,Hu Cheng-mu1,Wu Ting-ni1,Hu Xiang-yang2

Affiliation:

1. School of Pharmacy, Anhui Medical University, Hefei, China

2. Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China

Abstract

Abstract Objectives We investigated whether inhibition of hedgehog (Hh) signal by cyclopamine attenuated inflammation and cartilage damage in adjuvant-induced arthritis (AIA) rats. Methods Cyclopamine (2.5, 5, 10 mg/kg) was given by intraperitoneal injection once daily from day 12 to 21 after AIA induction. Paw swelling (volume changes), serum pro-inflammatory cytokines levels (ELISA), histological analysis of joint damage (H&E staining), proteoglycans expression (Alcian blue staining), mRNA levels of sonic Hh (Shh), glioma-associated oncogene homologue 1 (Gli1), type II collagen (COII) and aggrecan in cartilage (real-time PCR) and articular chondrocyte apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) were measured respectively. Key findings Cyclopamine effectively attenuated inflammation and cartilage damage of AIA rats, as evidenced by reduced paw swelling, serum levels of tumor necrosis factors (TNF)-α, IL-1β, IL-6 and histological scores of joint damage, increased proteoglycans expression and mRNA levels of COII and aggrecan in articular cartilage. Shh or Gli1 mRNA level was correlated negatively with COII and aggrecan mRNA levels, suggesting Hh signal inhibition was associated with promotion of cartilage extracellular matrix production. Furthermore, cyclopamine decreased the number of apoptotic articular chondrocytes of AIA rats, which might be partly related to its mechanisms on relieving cartilage damage. Conclusions Our findings present some experimental evidence that Hh signal inhibition might be of potential clinical interest in rheumatoid arthritis treatment.

Funder

National Natural Science Foundation of China

Specialized Research Fund for the Doctoral Program of Higher Education

Program for the Young and Middle-aged Academic Technology Leaders of Anhui Medical University

Program for the Top Young Talents of Anhui Medical University

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3