Phenotypic plasticity rather than ecotypic differentiation explains the broad realized niche of a Neotropical orchid species

Author:

de Lima T. M.1ORCID,da Silva S. F.12,Sánchez‐Vilas J.34,Júnior W. L. S.1,Mayer J. L. S.1,Ribeiro R. V.12,Pinheiro F.1ORCID

Affiliation:

1. Departamento de Biologia Vegetal Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP) Campinas Brazil

2. Laboratory of Crop Physiology, Department of Plant Biology Institute of Biology, Universidade Estadual de Campinas (UNICAMP) Campinas Brazil

3. Organisms and Environment Division Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building Museum Avenue Cardiff UK

4. Departamento de Bioloxía Funcional, Facultade de Bioloxía Universidade de Santiago de Compostela Santiago de Compostela Spain

Abstract

Abstract Local adaptation is common in plant species, and knowing whether a population is locally adapted has fundamental and applied relevance. However, local adaptation in tropical plants remains largely less studied, and covering this gap is not simple since reciprocal transplantation – the gold standard for detecting local adaptation – is not feasible for most species. Here, we combined genetic, climatic and phenotypic data to investigate ecotypic differentiation, an important aspect of local adaptation, in coastal and inland populations of the orchid Epidendrum fulgens Brongn., a long‐lived tropical plant for which reciprocal transplantation would not be feasible. We used nine microsatellite markers to estimate genetic divergence between inland and coastal populations. Moreover, occurrence data and climate data were used to test for differences in the realized niche of those populations. Finally, we assessed saturated water content, leaf specific area, height, and stomatal density in common garden and in situ to investigate the effects of ecotypic differentiation and plasticity on the phenotype. Coastal and inland groups' niches do not overlap, the former occupying a wetter and warmer area. However, this differentiation does not seem to be driven by ecotypic differentiation since there was no positive correlation between genetic structure and climate dissimilarity. Moreover, specific leaf area and leaf saturated water content, which are important phenotypic traits related to soil fertility and drought stress, were rather plastic. We conclude that ecotypic differentiation is absent, since phenotypic plasticity is an important mechanism explaining the niche broadness of this species.

Funder

Higher Education Funding Council for Wales

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3