Rootstock‐induced scion resistance against tobacco mosaic virus is associated with the induction of defence‐related transcripts and graft‐transmissible mRNAs

Author:

Kappagantu Madhu1,Brandon Matthew2,Tamukong Yvette B.2,Culver James N.12ORCID

Affiliation:

1. Institute for Bioscience and Biotechnology Research University of Maryland College Park Maryland USA

2. Department of Plant Science and Landscape Architecture University of Maryland College Park Maryland USA

Abstract

AbstractGrafting is a common horticultural practice used to confer desirable traits between rootstock and scion, including disease resistance. To investigate graft‐conferred resistance against viral diseases a novel heterografting system was developed usingNicotiana benthamianascions grafted onto different tomato rootstocks.N. benthamianais normally highly susceptible to tobacco mosaic virus (TMV) infection. However, specific tomato rootstock varieties were found to confer a range of resistance levels toN. benthamianascions inoculated with TMV. Conferred resistance was associated with delays in virus accumulation and the reduction in virus spread. RNA sequencing analysis showed the enrichment of transcripts associated with disease resistance and plant stress inN. benthamianascions grafted onto resistance‐inducing tomato rootstocks. Genome sequencing of resistance‐ and nonresistance‐conferring rootstocks was used to identify mobile tomato transcripts withinN. benthamianascions. Within resistance‐inducedN. benthamianascions, enriched mobile tomato transcripts were predominantly associated with defence, stress, and abscisic acid signalling when compared to similar scions grafted onto nonresistance‐inducing rootstock. Combining these findings suggests that graft‐induced resistance is modulated by rootstock scion transcriptional responses and rootstock‐specific mobile transcripts.

Funder

National Institutes of Health

National Science Foundation

Publisher

Wiley

Subject

Plant Science,Soil Science,Agronomy and Crop Science,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3