Affiliation:
1. Institute of Sustainable Chemistry Leuphana University of Lueneburg Lueneburg Germany
2. Strategic Science Consult Ltd. Hamburg Germany
3. Institute of Pharmacy and Biochemistry, Therapeutical Life Sciences Johannes Gutenberg—University Mainz Mainz Germany
4. GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
Abstract
AbstractThe spectral composition of light is an important factor for the metabolism of photosynthetic organisms. Several blue light‐regulated metabolic processes have already been identified in the industrially relevant microalga Monoraphidium braunii. However, little is known about the spectral impact on this species' growth, fatty acid (FA), and pigment composition. In this study, M. braunii was cultivated under different light spectra (white light: 400–700 nm, blue light: 400–550 nm, green light: 450–600 nm, and red light: 580–700 nm) at 25°C for 96 h. The growth was monitored daily. Additionally, the FA composition, and pigment concentration was analyzed after 96 h. The highest biomass production was observed upon white light and red light irradiation. However, green light also led to comparably high biomass production, fueling the scientific debate about the contribution of weakly absorbed light wavelengths to microalgal biomass production. All light spectra (white, blue, and green) that comprised blue‐green light (450–550 nm) led to a higher degree of FA unsaturation and a greater concentration of all identified pigments than red light. These results further contribute to the growing understanding that blue‐green light is an essential trigger for maximized pigment concentration and FA unsaturation in green microalgae.
Subject
Physical and Theoretical Chemistry,General Medicine,Biochemistry