Effect of the SiC powder microscopic morphology on properties of Si/SiC ceramics prepared by spark plasma sintering

Author:

Li Qisong1ORCID,Ma Yifei1,Li Ao1,Gao Yanfeng1,Jia Shaopei1,Zhang Qian1,Cheng Xiaozhe1,Wang Zhixin1,Mu Yunchao1,Huang Quan1

Affiliation:

1. School of Materials and Chemical Engineering Zhongyuan University of Technology Zhengzhou P. R. China

Abstract

AbstractTo solve the problem that Si was volatile and dense Si/SiC ceramics were difficult to achieve by spark plasma sintering (SPS) under a low sintering temperature and pressure, three kinds of SiC powders were used for particle grading and then ball‐milled with different time to further change and regulate their particle size and morphology, and finally nearly dense Si/SiC ceramics were prepared by SPS. The effect of milling time on particle size, morphology, tap density, phase, and microstructure of the SiC powders, as well as on bulk density, microhardness, thermal conductivity, phase, and microstructure of the Si/SiC ceramic, was researched. When the mixed SiC powders were ball‐milled for 12 min, the bulk density, microhardness, and thermal conductivity of Si/SiC ceramic were 2.96 g/cm3, 22.95 GPa, and 152.84 W/(m K), respectively. Ball milling changed the particle gradation and micro‐powder morphology and then affected the powder particle stacking state. Forming continuous pore channels was conducive for the volatile liquid Si to flowing and filling pores in a short time, resulting in denser Si/SiC ceramics at a lower sintering temperature and pressure. This study was useful for the preparation of ceramics containing volatile liquid phase by SPS.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3