Detection of NADH and NADPH levels in vivo identifies shift of glucose metabolism in cancer to energy production

Author:

Potapova Elena V.1ORCID,Zherebtsov Evgenii A.2ORCID,Shupletsov Valery V.1ORCID,Dremin Viktor V.13ORCID,Kandurova Ksenia Y.1ORCID,Mamoshin Andrian V.14ORCID,Abramov Andrey Y.15ORCID,Dunaev Andrey V.1ORCID

Affiliation:

1. Research and Development Center of Biomedical Photonics Orel State University Russia

2. Optoelectronics and Measurement Techniques Unit University of Oulu Finland

3. College of Engineering and Physical Sciences Aston University Birmingham UK

4. Orel Regional Clinical Hospital Russia

5. Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK

Abstract

Profound changes in the metabolism of cancer cells have been known for almost 100 years, and many aspects of these changes have continued to be actively studied and discussed. Differences in the results of various studies can be explained by the diversity of tumours, which have differing processes of energy metabolism, and by limitations in the methods used. Here, using fluorescence lifetime needle optical biopsy in a hepatocellular carcinoma (HCC) mouse model and patients with HCC, we measured reduced nicotinamide adenine dinucleotide (NADH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in control liver, and in HCC tumours and their adjacent regions. We found that NADH level (mostly responsible for energy metabolism) is increased in tumours but also in adjacent regions of the same liver. NADPH level is significantly decreased in the tumours of patients but increased in the HCC mouse model. However, in the ex vivo tumour slices of mouse HCC, reactive oxygen species production and glutathione level (both dependent on NADPH) were significantly suppressed. Thus, glucose‐dependent NADH and NADPH production in tumours changed but with a more pronounced shift to energy production (NADH), rather than NADPH synthesis for redox balance.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3