Müller cells under hydrostatic pressure modulate retinal cell survival via TRPV1/PLCγ1 complex‐mediated calcium influx in experimental glaucoma

Author:

Hu Huiling1,Nie Danyao1,Fang Min2,He Wenling1,Zhang Jing1,Liu Xinhua1ORCID,Zhang Guoming3ORCID

Affiliation:

1. Department of Cataract, Shenzhen Eye Hospital, Shenzhen Eye Institute Jinan University Shenzhen China

2. Department of Glaucoma, Shenzhen Eye Hospital, Shenzhen Eye Institute Jinan University Shenzhen China

3. Department of Fundus Disease, Shenzhen Eye Hospital, Shenzhen Eye Institute Jinan University Shenzhen China

Abstract

Glaucoma, an irreversible blinding eye disease, is currently unclear whose pathological mechanism is. This study investigated how transient receptor potential cation channel subfamily V member 1 (TRPV1), 1‐phosphatidylinositol 4,5‐bisphosphate phosphodiesterase gamma‐1 (PLCγ1), and P2X purinoceptor 7 (P2X7) modulate the levels of intracellular calcium ions (Ca2+) and adenosine triphosphate (ATP) in Müller cells and retinal ganglion cells (RGCs) under conditions of elevated intraocular pressure (IOP). Müller cells were maintained at hydrostatic pressure (HP). TRPV1‐ and PLCG1‐silenced Müller cells and P2X7‐silenced RGCs were constructed by transfection with short interfering RNA (siRNAs). RGCs were cultured with the conditioned media of Müller cells under HP. A mouse model of chronic ocular hypertension (COH) was established and used to investigate the role of TRPV1 in RGCs in vivo. Müller cells and RGCs were analyzed by ATP release assays, intracellular calcium assays, CCK‐8 assays, EdU (5‐ethynyl‐2′‐deoxyuridine) staining, TUNEL staining, flow cytometry, and transmission electron microscopy. In vivo changes in inner retinal function were evaluated by hematoxylin and eosin (H&E) staining and TUNEL staining. Western blot analyses were performed to measure the levels of related proteins. Our data showed that HP increased the levels of ATP and Ca2+ influx in Müller cells, and those increases were accompanied by the upregulation of TRPV1 and p‐PLCγ1 expression. Suppression of TRPV1 or PLCG1 expression in Müller cells significantly decreased the ATP levels and intracellular Ca2+ accumulation induced by HP. Knockdown of TRPV1, PLCG1, or P2X7 significantly decreased apoptosis and autophagy in RGCs cultured in the conditioned media of HP‐treated Müller cells. Moreover, TRPV1 silencing decreased RGC apoptosis and autophagy in the in vivo model of COH. Collectively, inhibition of TRPV1/PLCγ1 and P2X7 expression may be a useful therapeutic strategy for managing RGC death in glaucoma.

Funder

National Natural Science Foundation of China

Sanming Project of Medicine in Shenzhen

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3