Soft‐Tissue Vibrations and Fatigue During Prolonged Running: Does an Individualized Midsole Hardness Play a Role?

Author:

Play Marie‐Caroline1ORCID,Giandolini Marlène2ORCID,Perrin Titouan P.1ORCID,Metra Mélanie1ORCID,Feasson Léonard13ORCID,Rossi Jérémy1ORCID,Millet Guillaume Y.14ORCID

Affiliation:

1. Laboratoire Interuniversitaire de Biologie de la Motricité Université Jean Monnet Saint‐Etienne Saint‐Etienne France

2. Amer Sports Footwear Innovation and Sport Sciences Lab, Salomon SAS Annecy France

3. Service de Physiologie Clinique et de l'Exercice, CHU de Saint‐Etienne Saint‐Etienne France

4. Institut Universitaire de France (IUF) Paris France

Abstract

ABSTRACTFootwear has the potential to reduce soft‐tissue vibrations (STV) but responses are highly subject‐specific. Recent evidence shows that compressive garments minimizing STV have a beneficial effect on neuromuscular (NM) fatigue. The aim was to determine whether an individualized midsole hardness can minimize STV and NM fatigue during a half marathon. Twenty experienced runners were recruited for three visits: a familiarization session including the identification of midsole minimizing and maximizing STV amplitude (MIN and MAX, respectively), and two half marathon sessions at 95% of speed at the second ventilatory threshold. STV of the gastrocnemius medialis (GM) muscle, running kinetics, foot strike pattern, rating perceived exhaustion (RPE), and midsole liking were recorded every 3 km. NM fatigue was assessed on plantar flexors (PF) before (PRE) and after (POST) the half marathon. At POST, PF central and peripheral alterations and changes in contact time, step frequency, STV median frequency, and impact force frequency as well as foot strike pattern were found in both MIN and MAX. No significant differences in damping, STV main frequency, flight time, duty factor, and loading rate were observed between conditions whatever the time period. During the half marathon, STV amplitude of GM significantly increased over time for the MAX condition (+13.3%) only. Differences between MIN and MAX were identified for RPE and midsole liking. It could be hypothesized that, while significant, the effect of midsole hardness on STV is too low to substantially affect NM fatigue.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3