Schistocyte detection in artificial intelligence age

Author:

Zhang Zeng12,Yang Su12ORCID,Wang Xiuhong12

Affiliation:

1. Department of Clinical Laboratory, Sir Run Run Shaw Hospital Zhejiang University School of Medicine Zhejiang Hangzhou China

2. Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province Zhejiang Hangzhou China

Abstract

AbstractSchistocytes are fragmented red blood cells produced as a result of mechanical damage to erythrocytes, usually due to microangiopathic thrombotic diseases or mechanical factors. The early laboratory detection of schistocytes has a critical impact on the timely diagnosis, effective treatment, and positive prognosis of diseases such as thrombocytopenic purpura and hemolytic uremic syndrome. Due to the rapid development of science and technology, laboratory hematology has also advanced. The accuracy and efficiency of tests performed by fully automated hematology analyzers and fully automated morphology analyzers have been considerably improved. In recent years, substantial improvements in computing power and machine learning (ML) algorithm development have dramatically extended the limits of the potential of autonomous machines. The rapid development of machine learning and artificial intelligence (AI) has led to the iteration and upgrade of automated detection of schistocytes. However, along with significantly facilitated operation processes, AI has brought challenges. This review summarizes the progress in laboratory schistocyte detection, the relationship between schistocytes and clinical diseases, and the progress of AI in the detection of schistocytes. In addition, current challenges and possible solutions are discussed, as well as the great potential of AI techniques for schistocyte testing in peripheral blood.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hematological cytomorphology: Where we are;International Journal of Laboratory Hematology;2024-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3