How does straw returning combined with nitrogen fertilizer drive N2O emission in wheat–maize rotation system

Author:

Song Jiajie12,Bai Jinze12,Zhang Zhihao12,Yu Qi12,Ren Guangxin12,Han Xinhui12ORCID,Wang Xiaojiao12,Ren Chengjie12,Feng Yongzhong12ORCID,Wang Xing12

Affiliation:

1. College of Agronomy Northwest A & F University Yangling Shaanxi China

2. Shaanxi Engineering Research Center of Circular Agricultural Yangling Shaanxi China

Abstract

AbstractStraw returning not only improves carbon (C) and nitrogen (N) pools but also increases soil nitrous oxide (N2O) emissions, which poses a threat to the sustainable development of agriculture. To investigate the effect of straw return combined with nitrogen fertilizer on labile C and N pools in the soil and short‐term response to soil N2O emissions in wheat–maize rotation system. The consecutive field experiment was conducted from 2019 to 2021. Single factor randomized block design was used in the experiment design, with no straw returning and no fertilizer (CK), no straw returning and nitrogen fertilizer (S0N) and straw returning combined with nitrogen fertilizer (SN). The results indicated that the SN and S0N treatments significantly (p < .05) increased N2O emissions by 170.45% (2.43 kg N ha−1 year−1) and 119.5% (1.70 kg N ha−1 year−1), soil organic carbon (SOC) by 17.23% and 14.50% and soil total nitrogen (STN) by 58.50% and 31.50% respectively. In the 2020–2021 growing season, The soil microbial biomass carbon (SMBC) content of the SN and S0N treatments were higher than those of CK in the winter wheat seedling, winter wheat jointing, winter wheat booting, summer maize seedling and summer maize bell‐mouth stages. The structural equation model (SEM) indicated that C:N and NO3‐N were the major drivers that increased soil N2O emissions, but SMBN was the main driver that decreased soil N2O emissions. The SN and S0N treatments significantly increased soil N2O emissions by increasing the NO3‐N content. However, compared with the CK and S0N treatments, the SN treatment mitigated soil N2O emissions by increasing the SMBN content. More importantly, compared with CK treatment, SN treatment increased annual yield by 48.41% and 34.52%, the SN treatment could effectively improve the soil C and N pools. Therefore, straw return combined with nitrogen fertilizer (SN) may be the best choice of the treatments tested for reducing greenhouse gas emissions and achieving green and sustainable development.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pollution,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3