Affiliation:
1. Computer Science Department, College of Computer Science and Information Technology University of Anbar Anbar Iraq
Abstract
AbstractVoice pathology diagnosis requires extracting significant features from voice signals, and classical machine learning models can overfit to the training data, which can cause difficult issues and pose challenges. The study aimed to develop a reliable and efficient system for identifying voice pathologies utilizing the long short‐term memory (LSTM) method. The study combined unique feature sets such as the mel frequency cepstral coefficients (MFCCs), zero crossing rate (ZCR), and mel spectrograms, which have not been used together in previous works. Voice pathology identification improved the accuracy rate using the LSTM approach on the Saarbruecken voice database (SVD) samples. The best results achieved by the proposed system showed an accuracy rate of 99.3% for /u/ vowel samples in neutral pitch, 99.2% for /a/ vowel samples in high pitch, 99% for /i/ vowel samples in neutral pitch, and 99.2% for sentence samples. The experimental results were evaluated utilizing accuracy, precision, specificity, sensitivity, and F1 measures. Additionally, the study compared the performance of LSTM with that of artificial neural networks (ANNs) and found that LSTM achieved better outcomes.
Subject
Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献