Interpretable deep learning based text regression for financial prediction

Author:

Liang Rufeng1,Zhang Weiwen1ORCID,Ye Haiming1

Affiliation:

1. School of Computer Science and Technology Guangdong University of Technology Guangzhou China

Abstract

AbstractText regression is an important task in natural language processing (NLP), which aims to predict continuous numerical values associated with text. Previous work focused on linear text regression requiring manual feature selection for financial prediction. Recently, non‐linear text regression through neural network models has become a trend. However, most models rely only on convolutional neural networks (CNN) and suffer from insufficient interpretability. In this paper, we propose a deep neural network model named EM‐CBA for text regression and further interpret the model. The proposed model is powered by word EMbedding, CNN, Bidirectional long short‐term memory (Bi‐LSTM) and Attention mechanism. The proposed EM‐CBA takes financial report texts as input and predicts a financial metric named return on assets (ROA). We conduct comprehensive experiments on a dataset about the reports of enterprises. Experimental results show that the proposed model provides more accurate predictions of enterprises' metrics than previous convolutional neural network models and other classical models. The validity of each module of the model is also verified. Finally, we demonstrate a way of performing analysis in words change and results errors to intuitively interpret the effect of different text inputs on the model. The analysis demonstrates that the model is able to use information about sentiment words to analyse their associated contexts to revise the predictions.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3