Flock optimization induced deep learning for improved diabetes disease classification

Author:

Balasubramaniyan Divager1ORCID,Husin Nor Azura1,Mustapha Norwati1,Sharef Nurfadhlina Mohd1,Mohd Aris Teh Noranis1

Affiliation:

1. Faculty of Computer Science and Information Technology University Putra Malaysia Serdang Malaysia

Abstract

AbstractDiabetic disease classification requires a precise understanding of the clinical inputs and their intensity as observed through different stages. Automated and machine‐centric classification requires validated data handling and non‐converging inputs. For improving the classification precision impacted due by complex computations, this article introduces an assimilated method incorporating flock optimization and conventional deep learning. Deep learning trains the classification system through the best‐fit solution generated by the flock optimization. The features from the input data are first identified for which an initial population is initiated. The identified features are classified based on their leap‐up behaviour; this behaviour is induced if the data feature modifies the actual representation. If the data feature shows up over‐fitting behaviour, then it is classified as abnormal and is discarded. Therefore the objective function is to identify the best‐fitting data feature from the maximum flock members showing similar leap‐up behaviour. This output is used for training the deep learning paradigm for classifying precision‐less and high features. The precision is determined using existing classified data that matches better the flock output. If the classified data is under less precision, then the leap‐up behaviours' objective is tuned to eliminate over‐fitting inputs. Therefore, the variable features are thwarted for preventing precision degradation for varying diabetics' clinical observed data. The introduced system maximize the recognition accuracy by 8.47% and minimize the complexity by 7.65%.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3