Drug–drug interaction extraction‐based system: An natural language processing approach

Author:

Machado José1,Rodrigues Carla1,Sousa Regina1ORCID,Gomes Luis Mendes2

Affiliation:

1. Centro Algoritmi/LASI University of Minho Braga Portugal

2. Centro Algoritmi/LASI University of the Azores Ponta Delgada Portugal

Abstract

AbstractPoly‐medicated patients, especially those over 65, have increased. Multiple drug use and inappropriate prescribing increase drug–drug interactions, adverse drug reactions, morbidity, and mortality. This issue was addressed with recommendation systems. Health professionals have not followed these systems due to their poor alert quality and incomplete databases. Recent research shows a growing interest in using Text Mining via NLP to extract drug–drug interactions from unstructured data sources to support clinical prescribing decisions. NLP text mining and machine learning classifier training for drug relation extraction were used in this process. In this context, the proposed solution allows to develop an extraction system for drug–drug interactions from unstructured data sources. The system produces structured information, which can be inserted into a database that contains information acquired from three different data sources. The architecture outlined for the drug–drug interaction extraction system is capable of receiving unstructured text, identifying drug entities sentence by sentence, and determining whether or not there are interactions between them.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3