Model‐based offline reinforcement learning for sustainable fishery management

Author:

Ju Jun1ORCID,Kurniawati Hanna2,Kroese Dirk1,Ye Nan1

Affiliation:

1. School of Mathematics and Physics The University of Queensland St Lucia Queensland Australia

2. School of Computing Australian National University Canberra Australian Capital Territory Australia

Abstract

AbstractFisheries, as indispensable natural resources for human, need to be managed with both short‐term economical benefits and long‐term sustainability in consideration. This has remained a challenge, because the population and catch dynamics of the fisheries are complex and noisy, while the data available is often scarce and only provides partial information on the dynamics. To address these challenges, we formulate the population and catch dynamics as a Partially Observable Markov Decision Process (POMDP), and propose a model‐based offline reinforcement learning approach to learn an optimal management policy. Our approach allows learning fishery management policies from possibly incomplete fishery data generated by a stochastic fishery system. This involves first learning a POMDP fishery model using a novel least squares approach, and then computing the optimal policy for the learned POMDP. The learned fishery dynamics model is useful for explaining the resulting policy's performance. We perform systematic and comprehensive simulation study to quantify the effects of stochasticity in fishery dynamics, proliferation rates, missing values in fishery data, dynamics model misspecification, and variability of effort (e.g., the number of boat days). When the effort is sufficiently variable and the noise is moderate, our method can produce a competitive policy that achieves 85% of the optimal value, even for the hardest case of noisy incomplete data and a misspecified model. Interestingly, the learned policies seem to be robust in the presence of model learning errors. However, non‐identifiability kicks in if there is insufficient variability in the effort level and the fishery system is stochastic. This often results in poor policies, highlighting the need for sufficiently informative data. We also provide a theoretical analysis on model misspecification and discuss the tendency of a Schaefer model to overfit compared with a Beverton–Holt model.

Funder

Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers

Australian Research Council

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3