Microbe‐mediated biodegradation of microplastics from wastes

Author:

Chettri Dixita1,Pati Tanmoy1,Verma Anil Kumar1ORCID

Affiliation:

1. Department of Microbiology Sikkim University Gangtok Sikkim India

Abstract

AbstractMicroplastics (MPs) with slow degradation rates carry toxins and pathogens from surroundings, accumulate and pollute the environment. They bio‐accumulate on humans and other lifeforms leading to health concerns, including inflammatory lesions, oxidative stress and increased cancer risk, thus requiring immediate remediation actions. This review summarizes, categorizes and analyses recent findings on MP source, transit and environmental toxicity and explores their microbe‐mediated breakdown. Various micro‐organisms such as fungi, bacteria, algae and protists interact with and build biofilm on MP surfaces and alter their surface morphology for their degradation. Pure strains and microbial consortia have been successfully able to degrade MPs. Extracellular enzymes are produced by these micro‐organisms that convert the complex recalcitrant polymeric structure of MP to simpler forms. Further, knowledge of factors associated with MP degradation along with the development of genetic tools enhances the rate of microbial degradation with consortium having an advantage over single bacterium‐mediated MP transformation, which has been discussed.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3